
www.manaraa.com

Concepts in Programming Languages

Alan Mycrofta

Computer Laboratory

University of Cambridge

2014–2015 (Easter Term)

http://www.cl.cam.ac.uk/teaching/1415/ConceptsPL/

aNotes largely due to Marcelo Fiore—but errors are my responsibility.

1

www.manaraa.com

Practicalities

� Course web page:

www.cl.cam.ac.uk/teaching/1415/ConceptsPL/

with lecture slides, exercise sheet, and reading material.

� One exam question.

2

www.manaraa.com

Main books

� J. C. Mitchell. Concepts in programming languages.

Cambridge University Press, 2003.

� T. W. Pratt and M. V. Zelkowitz. Programming Languages:

Design and implementation (3RD EDITION). Prentice Hall,

1999.

⋆ M. L. Scott. Programming language pragmatics

(2ND EDITION). Elsevier, 2006.

� R. Harper. Practical Foundations for Programming

Languages. Cambridge University Press, 2013.

3

www.manaraa.com

Context :
so many programming languages

Peter J. Landin: “The Next 700 Programming Languages”,

CACM >>>>1966<<<<.

Some programming-language ‘family trees’ (too big for slide):

http://www.oreilly.com/go/languageposter

http://www.levenez.com/lang/

http://rigaux.org/language-study/diagram.html

http://www.rackspace.com/blog/

infographic-evolution-of-computer-languages/

Plan of this course: pick out interesting programming-

language concepts and major evolutionary trends.

4

www.manaraa.com

Topics

I. Introduction and motivation.

II. The first procedural language: FORTRAN (1954–58).

III. The first declarative language: LISP (1958–62).

IV. Block-structured procedural languages: Algol (1958–68),

Pascal (1970).

V. Object-oriented languages — Concepts and origins:

Simula (1964–67), Smalltalk (1971–80).

VI. Languages for concurrency and parallelism.

VII. Types in programming languages: ML (1973–1978).

VIII. Data abstraction and modularity: SML Modules (1984–97).

IX. A modern language design: Scala (2007)

X. Miscellaneous concepts

5

www.manaraa.com

˜ Topic I ˜
Introduction and motivation

References:

� Chapter 1 of Concepts in programming languages by

J. C. Mitchell. CUP, 2003.

� Chapter 1 of Programming languages: Design and

implementation (3RD EDITION) by T. W. Pratt and

M. V. Zelkowitz. Prentice Hall, 1999.

� Chapter 1 of Programming language pragmatics

(2ND EDITION) by M. L. Scott. Elsevier, 2006.

6

www.manaraa.com

Goals

� Critical thinking about programming languages.

? What is a programming language!?

� Study programming languages.

� Be familiar with basic language concepts.

� Appreciate trade-offs in language design.

� Trace history, appreciate evolution and diversity of ideas.

� Be prepared for new programming methods, paradigms.

7

www.manaraa.com

Why study programming languages?

� To improve the ability to develop effective algorithms.

� To improve the use of familiar languages.

� To increase the vocabulary of useful programming

constructs.

� To allow a better choice of programming language.

� To make it easier to learn a new language.

� To make it easier to design a new language.

� To simulate useful features in languages that lack them.

� To make better use of language technology wherever it

appears.

8

www.manaraa.com

What makes a good language?

� Clarity, simplicity, and unity.

� Orthogonality.

� Naturalness for the application.

� Support of abstraction.

� Ease of program verification.

� Programming environments.

� Portability of programs.

9

www.manaraa.com

� Cost of use.

� Cost of execution.

� Cost of program translation.

� Cost of program creation, testing, and use.

� Cost of program maintenance.

10

www.manaraa.com

What makes a language successful?

� Expressive power.

� Ease of use for the novice.

� Ease of implementation.

� Standardisation.

� Many useful libraries.

� Excellent compilers (including open-source)

� Economics, patronage, and inertia.

11

www.manaraa.com

Influences

� Computer capabilities.

� Applications.

� Programming methods.

� Implementation methods.

� Theoretical studies.

� Standardisation.

12

www.manaraa.com

Applications domains

Era Application Major languages Other languages

1960s Business COBOL Assembler

Scientific FORTRAN ALGOL, BASIC, APL

System Assembler JOVIAL, Forth

AI LISP SNOBOL

Today Business COBOL, SQL, spreadsheet C, PL/I, 4GLs

Scientific FORTRAN, C, C++ BASIC, Pascal

Maple, Mathematica

System BCPL, C, C++ Pascal, Ada, BASIC,

MODULA

AI LISP, Prolog

Publishing TEX, Postscript,

word processing

Process UNIX shell, TCL, Perl Marvel, Esterel

New paradigms Smalltalk, SML, Haskell, Java Eiffel, C#, Scala

Python, Ruby

13

www.manaraa.com

? Why are there so many languages?

� Evolution.

� Special purposes.

� No one language is good at expressing all programming

styles.

� Personal preference.

14

www.manaraa.com

?> =<89 :;Motivating application in language design

A specific purpose provides focus for language designers;

it helps to set criteria for making design decisions.

A specific, motivating application also helps to solve one

of the hardest problems in programming language design:

deciding which features to leave out.

15

www.manaraa.com

Examples: Good languages designed with a specific purpose

in mind.

� LISP: symbolic computation, automated reasoning

� FP: functional programming, algebraic laws

� BCPL: compiler writing

� Simula: simulation

� C: systems programming

� ML: theorem proving

� Smalltalk: Dynabook

� Clu, SML Modules: modular programming

� C++: object orientation

� Java: Internet applications

16

www.manaraa.com

Program execution model

Good language design presents abstract machine.

� FORTRAN: Flat register machine; memory arranged

as linear array

� LISP: cons cells, read-eval-print loop

� Algol family: stack of activation records; heap storage

� BCPL, C: underlying machine + abstractions

� Simula: Object references

� FP, ML: functions are basic control structure

� Smalltalk: objects and methods, communicating by

messages

� Java: Java virtual machine

17

www.manaraa.com

?> =<89 :;Classification of programming languages

� Imperative

procedural C, Ada, Pascal, Algol, FORTRAN, . . .

object oriented Scala, C#,Java, Smalltalk, SIMULA, . . .

scripting Perl, Python, PHP, . . .

� Declarative

functional Haskell, SML, Lisp, Scheme, . . .

logic Prolog

dataflow Id, Val

constraint-based spreadsheets

template-based XSLT

18

www.manaraa.com

Theoretical foundations

Examples:

� Formal-language theory.

� Automata theory.

� Algorithmics.

� λ-calculus.

� Semantics.

� Formal verification.

� Type theory.

� Complexity theory.

� Logic.

19

www.manaraa.com

Standardisation

� Proprietary standards.

� Consensus standards.

� ANSI (American National Standards Institute)

� IEEE (Institute of Electrical and Electronics Engineers)

� BSI (British Standard Institute)

� ISO (International Standards Organisation)

20

www.manaraa.com

Language standardisation

Consider: int i; i = (1 && 2) + 3 ;

? Is it valid C code? If so, what’s the value of i?

? How do we answer such questions!?

! Read the reference manual.

! Try it and see!

! Read the ANSI C Standard.

21

www.manaraa.com

Language-standards issues

Timeliness. When do we standardise a language?

Conformance. What does it mean for a program to adhere to

a standard and for a compiler to compile a standard?

Ambiguity and freedom to optimise — Machine

dependence — Undefined behaviour.

Obsolescence. When does a standard age and how does it

get modified?

Deprecated features.

22

www.manaraa.com

Language standards :
Accidental misspecification

Various examples (we’ll see “function types in Algol” later).

In language PL/1 the type DEC(p,q) means p digits with q after

the decimal point.

? So what value does the following expression have:

9 + 8/3

Suggestions:

− 11.666... ?

− Overflow ?

− 1.666... ?

23

www.manaraa.com

DEC(p,q) means p digits with q after the decimal point.

Type rules for DECIMAL in PL/1:

DEC(p1,q1) + DEC(p2,q2)

=> DEC(MIN(1+MAX(p1-q1,p2-q2)+MAX(q1,q2),15),MAX(q1,q2))

DEC(p1,q1) / DEC(p2,q2)

=> DEC(15,15-((p1-q1)+q2))

24

www.manaraa.com

For 9 + 8/3 we have:

DEC(1,0) + DEC(1,0)/DEC(1,0)

=> DEC(1,0) + DEC(15,15-((1-0)+0))

=> DEC(1,0) + DEC(15,14)

=> DEC(MIN(1+MAX(1-0,15-14)+MAX(0,14),15),MAX(0,14))

=> DEC(15,14)

So the calculation is as follows

9 + 8/3

-> 9 + 2.66666666666666

-> 11.66666666666666 // out of range for DEC(15,14)

-> (OVERFLOW)

-> 1.66666666666666 // if OVERFLOW disabled

25

www.manaraa.com

History

1951–55: Experimental use of expression compilers.

1956–60: FORTRAN, COBOL, LISP, Algol 60.

1961–65: APL notation, Algol 60 (revised), SNOBOL, CPL.

1966–70: APL, SNOBOL 4, FORTRAN 66, BASIC, SIMULA,

Algol 68, Algol-W, BCPL.

1971–75: Pascal, PL/1 (Standard), C, Scheme, Prolog.

1976–80: Smalltalk, Ada, FORTRAN 77, ML.

26

www.manaraa.com

1981–85: Smalltalk-80, Prolog, Ada 83.

1986–90: C++, SML, Haskell.

1991–95: Ada 95, TCL, Perl.

1996–2000: Java.

2000–05: C#, Python, Ruby, Scala.

1990– : Open/MP, MPI, Posix threads, Erlang, X10,

MapReduce, Java 8 features.

For more information:

en.wikipedia.org/wiki/History_of_programming_languages

27

www.manaraa.com

Language groups

� Multi-purpose languages

� Scala, C#, Java, C++, C

� Haskell, SML, Scheme, LISP

� Perl, Python, Ruby

� Special-purpose languages

� UNIX shell

� SQL

� LATEX

28

www.manaraa.com

Things to think about

� What makes a good language?

� The role of

1. motivating applications,

2. program execution,

3. theoretical foundations

in language design.

� Language standardisation.

29

www.manaraa.com

˜ Topic II ˜
FORTRAN : A simple procedural language

References:

� Chapter 10(§1) of Programming Languages: Design and

implementation (3RD EDITION) by T. W. Pratt and

M. V. Zelkowitz. Prentice Hall, 1999.

� The History of FORTRAN I, II, and III by J. Backus. In

History of Programming Languages by R. L. Wexelblat.

Academic Press, 1981.

30

www.manaraa.com

FORTRAN = FORmula TRANslator
(1957)

� Developed (1950s) by an IBM team led by John Backus.

� The first high-level programming language to become

widely used. (At the time the utility of any high-level

language was open to question!)

The main complaint was the efficiency of compiled code.

This heavily influenced the design, orienting it towards

providing execution efficiency.

� Standards:

1966, 1977 (FORTRAN 77), 1990 (Fortran 90), . . .

2010 (Fortran 2008).

� Remains main language for scientific computing.

� Easier for a compiler to optimise than C.

31

www.manaraa.com

Overview
Execution model (traditional Fortran)

� FORTRAN program = main program + subprograms

� Each is compiled separately from all others.

� Translated programs are linked into final executable

form during loading.

� All storage is allocated statically before program execution

begins; no run-time storage management is provided.

� Flat register machine. No stacks, no recursion. Memory

arranged as linear array.

32

www.manaraa.com

Overview
Compilation

FORTRAN program

��

Compiler

��

Incomplete machine language

**❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
Library routines

ww♦♦
♦♦
♦♦
♦

Linker

��

Machine language program

33

www.manaraa.com

Overview
Data types

� Numeric data: Integer, real, complex, double-precision

real.

� Boolean data. called logical

� Arrays. of fixed declared length

� Character strings. of fixed declared length

� Files.

� Fortran 90 added ‘derived data types’ (like C structs).

34

www.manaraa.com

Overview
Control structures

� FORTRAN 66

Relied heavily on statement labels and GOTO

statements, but did have DO (for) loops.

� FORTRAN 77

Added some modern control structures

(e.g., if-then-else blocks), but WHILE loops and

recursion had to wait for Fortran 90.

� Fortran 2008

Support for concurrency and objects

35

www.manaraa.com

Example

PROGRAM MAIN

PARAMETER (MaXsIz=99)

REAL A(mAxSiZ)

10 READ (5,100,END=999) K

100 FORMAT(I5)

IF (K.LE.0 .OR. K.GT.MAXSIZ) STOP

READ *,(A(I),I=1,K)

PRINT *,(A(I),I=1,K)

PRINT *,’SUM=’,SUM(A,K)

GO TO 10

999 PRINT *, "All Done"

STOP

END

36

www.manaraa.com

C SUMMATION SUBPROGRAM

FUNCTION SUM(V,N)

REAL V(N)

SUM = 0.0

DO 20 I = 1,N

SUM = SUM + V(I)

20 CONTINUE

RETURN

END

37

www.manaraa.com

Example
Commentary

� Originally columns and lines were relevant, and blanks

and upper/lower case are ignored except in strings.

Fortran 90 added free-form and forbade blanks in

identifiers (use the .f90 file extension on Linux).

� Variable names are from 1 to 6 characters long

(31 since Fortran 90), letters, digits, underscores only.

� Variables need not be declared: implicit naming

convention determines their type (good programming style

uses IMPLICIT NONE to disable this).

� Programmer-defined constants (PARAMETER)

� Arrays: subscript ranges can be declared as (lwb : upb)

with (size) meaning (1 : size).

38

www.manaraa.com

� Data formats for I/O.

� Historically functions are compiled separately from the

main program. Failure may arise when the loader tries to

merge subprograms with main program.

Fortran 90 provides a module system.

� Function parameters are uniformly transmitted by

reference (or value-result). Traditionally all allocation is

done statically.

But Fortran 90 provides dynamic allocation.

� A value is returned in a FORTRAN function by assigning a

value to the name of a function.

39

www.manaraa.com

Types

� Traditional FORTRAN had no user-defined types.

Fortran 90 added ‘derived data types’ (like C structs).

� Static type checking is used in FORTRAN, but the

checking is traditionally incomplete.

Constructs that could not be statically checked were often

left unchecked at run time.

(An early preference for speed over ease-of-bug-finding

still visible in languages like C.)

Fortran 90 added a module system which enables

checking across separately compiled subprograms.

40

www.manaraa.com

Storage
Representation and Management

� Storage representation in FORTRAN is sequential.

� Only two levels of referencing environment are provided,

global and local.

41

www.manaraa.com

The sequential storage representation is critical in the

definition of the EQUIVALENCE and COMMON declarations.

� EQUIVALENCE

REAL X

INTEGER Y

EQUIVALENCE (X,Y)

� COMMON

COMMON/BLK/X,Y,K(25) in MAIN

COMMON/BLK/U,V,I(5),M(4,5) in SUB

42

www.manaraa.com

/. -,
() *+Aliasing

Aliasing occurs when two names or expressions

refer to the same object or location.

� Aliasing raises serious problems for both the user

and implementer of a language.

� Because of the problems caused by aliasing, new

language designs sometimes attempt to restrict or

eliminate altogether features that allow aliases to

be constructed.

43

www.manaraa.com

/. -,
() *+Parameters

There are two concepts that must be clearly distinguished.

� The parameter names used in a function declaration

are called formal parameters.

� When a function is called, expressions called actual

parameters are used to compute the parameter values

for that call.

44

www.manaraa.com

FORTRAN subroutines and functions

� Actual parameters may be simple variables, literals,

array names, subscripted variables, subprogram

names, or arithmetic or logical expressions.

The interpretation of a formal parameter as an array

is done by the called subroutine.

� Traditionally each subroutine is compiled independently

and no checking is done for compatibility between the

subroutine declaration and its call.

Fortran 90 fixed this, including allowing IN and OUT

specificiers on parameters.

45

www.manaraa.com

� The language specifies that if a formal parameter is

assigned to, the actual parameter must be a variable. This

is a traditional source of bugs as this needs cross-module

compilation checking:

Example:

SUBROUTINE SUB(X,Y)

X = Y

END

CALL SUB(-1.0,1.0)

Solution: use the Fortran 90 features.

� Parameter passing is uniformly by reference.

46

www.manaraa.com

FORTRAN lives!

� Fortran is one of the first languages, and the only early

language still alive.

� Lots of CS people will tell you about all the diseases of

Fortran based on Fortran 66, or Fortran 77.

� Modern Fortran still admits (most) old code for backwards

compatibility, but also has most of the things you expect in

a modern language (objects, modules, dynamic allocation,

parallel constructs). There’s even a proposal for “units of

measure” to augment types.

(Language evolution is preferable to extinction!)

� Don’t be put off by the syntax—or what ill-informed people

say.

47

www.manaraa.com

˜ Topic III ˜
LISP : functions, recursion, and lists

References:

� Chapter 3 of Concepts in programming languages by

J. C. Mitchell. CUP, 2003.

� Chapters 5(§4.5) and 13(§1) of Programming languages:

Design and implementation (3RD EDITION) by T. W. Pratt

and M. V. Zelkowitz. Prentice Hall, 1999.

48

www.manaraa.com

LISP = LISt Processing
(±1960)

� Developed in the late 1950s and early 1960s by a team

led by John McCarthy in MIT.

� McCarthy described LISP as a “a scheme for representing

the partial recursive functions of a certain class of

symbolic expressions”.

� Motivating problems: Symbolic computation (symbolic

differentiation), logic (Advice taker), experimental

programming.

� Software embedding LISP: Emacs (text editor),

GTK (linux graphical toolkit), Sawfish (window manager),

GnuCash (accounting software).

49

www.manaraa.com

/. -,
() *+Programming-language phrases

� Expressions. A syntactic entity that may be evaluated to

determine its value.

� Statement. A command that alters the state of the

machine in some explicit way.

� Declaration. A syntactic entity that introduces a new

identifier, often specifying one or more attributes.

50

www.manaraa.com

Innovation in the design of LISP

� LISP is an expression-based language.

Conditional expressions that produce a value were

new in LISP.

51

www.manaraa.com

Some contributions of LISP

� Lists.

� Recursive functions.

� Garbage collection.

� Programs as data.

52

www.manaraa.com

Overview

� LISP syntax is extremely simple. To make parsing easy, all

operations are written in prefix form (i.e., with the operator

in front of all the operands).

� LISP programs compute with atoms and cells.

� LISP is an untyped programming language.

53

www.manaraa.com

� Most operations in LISP take list arguments and return

list values.

Example:

(cons ’(a b c) ’(d e f)) cons-cell representation

Remark: The function (quote x), or simply ’x, just

returns the literal value of its argument.

54

www.manaraa.com

? How does one recognise a LISP program?

(defvar x 1) val x = 1 ;

(defun g(z) (+ x z)) fun g(z) = x + z ;

(defun f(y) fun f(y)

(+ (g y) = g(y) +

(let let

((x y)) val x = y

(in

g x) g(x)

))) end ;

(f (+ x 1)) f(x+1) ;

! It is full of parentheses!

55

www.manaraa.com

/. -,
() *+Static and dynamic scope

There are two main rules for finding the declaration of a global

identifier:

� Static scope. A global identifier refers to the identifier with

that name that is declared in the closest enclosing scope

of the program text.

� Dynamic scope. A global identifier refers to the identifier

associated with the most recent environment.

56

www.manaraa.com

/. -,
() *+Abstract machines

The terminology abstract machine is generally used to refer to

an idealised computing device that can execute a specific

programming language directly. Systems people use virtual

machine (as in JVM) for a similar concept.

57

www.manaraa.com

LISP abstract machine

The abstract machine for Pure LISP has four parts:

1. A LISP expression to be evaluated.

2. A continuation, which is a function representing the

remaining of the program to evaluate when done with

the current expression.

3. An association list, also know as the A-list.

4. A heap, which is a set of cons cells (or dotted pairs) that

might be pointed to by pointers in the A-list.

58

www.manaraa.com

Garbage collection
McCarthy (1960)

. . . When a free register is wanted, and there is none

left on the free-storage list, a reclamation cycle starts.

/. -,
() *+Garbage collection

In computing, garbage refers to memory locations that are

not accessible to a program.

Garbage collection is the process of detecting garbage

during the execution of a program and making it available.

59

www.manaraa.com

Programs as data

� One feature that sets LISP apart from many other

languages is that it is possible for a program to build a

data structure that represents an expression and then

evaluates the expression as if it were written as part of

the program. This is done with the function eval.

60

www.manaraa.com

Parameter passing in LISP

The actual parameters in a function call are always

expressions, represented as lists structures.

LISP provides two main methods of parameter passing:

� Pass/Call-by-value. The most common method is to

evaluate the expressions in the actual-parameter list, and

pass the resulting values.

� Pass/Call-by-name.⋆ A less common method is to transmit

the expression in the actual parameter list unevaluated,

and let the call function evaluate them as needed using

eval.

The programmer may specify transmission by name using

nlambda in place of lambda in the function definition.

61

www.manaraa.com

Strict and lazy evaluation

Example: Consider the following function definitions with

parameter-passing by value.

(defun CountFrom(n) (CountFrom(+ n 1)))

(defun FunnyOr(x y)

(cond (x 1) (T y))

)

(defun FunnyOrelse(x y)

(cond ((eval x) 1) (T (eval y)))

)

62

www.manaraa.com

? What happens in the following calls?

(FunnyOr T (CountFrom 0))

(FunnyOr nil T)

(FunnyOrelse ’T ’(CountFrom 0))

(FunnyOrelse ’nil ’T)

63

www.manaraa.com

˜ Topic IV ˜
Block-structured procedural languages

Algol and Pascal

References:

� Chapters 5 and 7, of Concepts in programming

languages by J. C. Mitchell. CUP, 2003.

� Chapters 10(§2) and 11(§1) of Programming languages:

Design and implementation (3RD EDITION) by T. W. Pratt

and M. V. Zelkowitz. Prentice Hall, 1999.

64

www.manaraa.com

/. -,
() *+Parameter passing

The way that actual parameters are evaluated and passed

to procedures depends on the programming language and

the kind of parameter-passing mechanisms it uses.

The main distinction between different parameter-passing

mechanisms are:

� the time that the actual parameter is evaluated, and

� the location used to store the parameter value.

NB: The location of a variable (or expression) is called its

L-value, and the value stored in this location is called the

R-value of the variable (or expression).

65

www.manaraa.com

/. -,
() *+Parameter passing

Pass/Call-by-value

� In pass-by-value, the actual parameter is evaluated. The

value of the actual parameter is then stored in a new

location allocated for the function parameter.

� Under call-by-value, a formal parameter corresponds to

the value of an actual parameter. That is, the formal x of a

procedure P takes on the value of the actual parameter.

The idea is to evaluate a call P(E) as follows:

x := E;

execute the body of procedure P;

if P is a function, return a result.

66

www.manaraa.com

/. -,
() *+Parameter passing

Pass/Call-by-reference

� In pass-by-reference, the actual parameter must have

an L-value. The L-value of the actual parameter is then

bound to the formal parameter.

� Under call-by-reference, a formal parameter becomes

a synonym for the location of an actual parameter. An

actual reference parameter must have a location.

67

www.manaraa.com

Example:

program main;

begin

function f(var x: integer; y: integer): integer;

begin

x := 2;

y := 1;

if x = 1 then f := 1 else f:= 2

end;

var z: integer;

z := 0;

writeln(f(z,z))

end

68

www.manaraa.com

The difference between call-by-value and call-by-reference

is important to the programmer in several ways:

� Side effects.

� Aliasing.

� Efficiency.

69

www.manaraa.com

/. -,
() *+Parameter passing
Pass/Call-by-value/result

Call-by-value/result is also known as copy-in/copy-out

because the actuals are initially copied into the formals and

the formals are eventually copied back out to the actuals.

70

www.manaraa.com

Examples:

� A parameter in Pascal is normally passed by value. It is

passed by reference, however, if the keyword var appears

before the declaration of the formal parameter.

procedure proc(in: Integer; var out: Real);

� The only parameter-passing method in C is call-by-value;

however, the effect of call-by-reference can be achieved

using pointers. In C++ true call-by-reference is available

using reference parameters.

71

www.manaraa.com

� Ada supports three kinds of parameters:

1. in parameters, corresponding to value parameters;

2. out parameters, corresponding to just the copy-out

phase of call-by-value/result; and

3. in out parameters, corresponding to either

reference parameters or value/result parameters,

at the discretion of the implementation.

72

www.manaraa.com

/. -,
() *+Parameter passing

Pass/Call-by-name

The Algol 60 report describes call-by-name .

73

www.manaraa.com

Block structure

� In a block-structured language, each program or

subprogram is organised as a set of nested blocks.

A block is a region of program text, identified by begin

and end markers, that may contain declarations local

to this region.

� Block structure was first defined in Algol. Pascal contains

nested procedures but not in-line blocks; C contains in-line

blocks but not nested procedures; Ada supports both.

74

www.manaraa.com

� Block-structured languages are characterised by the

following properties:

� New variables may be declared at various points in a

program.

� Each declaration is visible within a certain region

of program text, called a block.

� When a program begins executing the instructions

contained in a block at run time, memory is

allocated for the variables declared in that block.

� When a program exits a block, some or all of the

memory allocated to variables declared in that

block will be deallocated.

75

www.manaraa.com

� An identifier that is not declared in the current

block is considered global to the block and refers

to the entity with this name that is declared in the

closest enclosing block.

76

www.manaraa.com

Algol

had a major effect on language design

� The main characteristics of the Algol family are:

� the familiar semicolon-separated sequence of

statements,

� block structure,

� functions and procedures, and

� static typing.

Algol is dead but its descendants live on!

77

www.manaraa.com

Algol 60
Features

� Simple statement-oriented syntax.

� Block structure.

� Recursive functions and stack storage allocation.

� Fewer ad hoc restrictions than previous languages

(e.g., general expressions inside array indices,

procedures that could be called with procedure

parameters).

� A primitive static type system, later improved in

Algol 68 and Pascal.

78

www.manaraa.com

Algol 60
Some trouble spots

� The Algol 60 type discipline had some shortcomings.

For instance:

� The type of a procedure parameter to a procedure

does not include the types of parameters.

� An array parameter to a procedure is given type array,

without array bounds.

� Algol 60 was designed around two parameter-passing

mechanisms, call-by-name and call-by-value.

Call-by-name interacts badly with side effects;

call-by-value is expensive for arrays.

79

www.manaraa.com

Algol 68
� One contribution of Algol 68 was its regular, systematic

type system.

The types (referred to as modes in Algol 68) are either

primitive (int, real, complex, bool, char, string, bits,

bytes, semaphore, format, file) or compound (array,

structure, procedure, set, pointer).

Type constructions could be combined without restriction.

This made the type system seem more systematic than

previous languages.

� Algol 68 memory management involves a stack for local

variables and heap storage. Algol 68 data on the heap are

explicitly allocated, and are reclaimed by garbage

collection.

80

www.manaraa.com

� Algol 68 parameter passing is by value, with

pass-by-reference accomplished by pointer types. (This

is essentially the same design as that adopted in C.)

81

www.manaraa.com

Algol innovations

� Use of BNF syntax description.

� Block structure.

� Scope rules for local variables.

� Dynamic lifetimes for variables.

� Nested if-then-else expressions and statements.

� Recursive subroutines.

� Call-by-value and call-by-name arguments.

� Explicit type declarations for variables.

� Static typing.

� Arrays with dynamic bounds.

82

www.manaraa.com

Pascal

� Pascal is a quasi-strong, statically typed programming

language.

An important contribution of the Pascal type system is the

rich set of data-structuring concepts: e.g. enumerations,

subranges, records, variant records, sets, sequential files.

� The Pascal type system is more expressive than the

Algol 60 one (repairing some of its loopholes), and simpler

and more limited than the Algol 68 one (eliminating some

of the compilation difficulties).

� Pascal was the first language to propose index checking.

83

www.manaraa.com

� Problematically, in Pascal, the index type of an array is

part of its type. The Pascal standard defines conformant

array parameters whose bounds are implicitly passed to a

procedure. The Ada programming language uses

so-called unconstrained array types to solve this problem.

The subscript range must be fixed at compile time

permitting the compiler to perform all address calculations

during compilation.

procedure Allowed(a: array [1..10] of integer) ;

procedure

NotAllowed(n: integer;

a: array [1..n] of integer) ;

84

www.manaraa.com

Pascal variant records
Variant records have a part common to all records of that type,

and a variable part, specific to some subset of the records.
type

kind = (unary, binary) ;

type { datatype }

UBtree = record { ’a UBtree = record of }

value: integer ; { ’a * ’a UBkind }

case k: kind of { and ’a UBkind = }

unary: ^UBtree ; { unary of ’a UBtree }

binary: record { | binary of }

left: ^UBtree ; { ’a UBtree * }

right: ^UBtree { ’a UBtree ; }

end

end ;

85

www.manaraa.com

˜ Topic V ˜
Object-oriented languages : Concepts and origins

SIMULA and Smalltalk

References:

⋆ Chapters 10 and 11 of Concepts in programming

languages by J. C. Mitchell. CUP, 2003.

� Chapters 8, and 12(§§2 and 3) of Programming

languages: Design and implementation (3RD EDITION)

by T. W. Pratt and M. V. Zelkowitz. Prentice Hall, 1999.

86

www.manaraa.com

Objects in ML !?
exception Empty ;

fun newStack(x0)

= let val stack = ref [x0]

in ref{ push = fn(x)

=> stack := (x :: !stack) ,

pop = fn()

=> case !stack of

nil => raise Empty

| h::t => (stack := t; h)

}end ;

exception Empty

val newStack = fn :

’a -> {pop:unit -> ’a, push:’a -> unit} ref

87

www.manaraa.com

NB:

� ! The stack discipline of Algol for activation records fails!

� ? Is ML an object-oriented language?

! Of course not!

? Why?

88

www.manaraa.com

Basic concepts in
object-oriented languages

Four main language concepts for object-oriented

languages:

1. Dynamic lookup.

2. Abstraction.

3. Subtyping.

4. Inheritance.

89

www.manaraa.com

/. -,
() *+Dynamic lookup

� Dynamic lookup means that when a message is sent to an

object, the method to be executed is selected dynamically,

at run time, according to the implementation of the object

that receives the message.

There is a family of object-oriented languages that is

based on the “run-time overloading” view of dynamic

lookup. The most prominent design of this form is

CLOS (= Common Lisp Object System), which features

multiple dispatch.

90

www.manaraa.com

/. -,
() *+Abstraction

� Abstraction means that implementation details are hidden

inside a program unit with a specific interface. For objects,

the interface usually consists of a set of methods that

manipulate hidden data.

91

www.manaraa.com

/. -,
() *+Subtyping

� Subtyping is a relation on types that allows values of

one type to be used in place of values of another.

Specifically, if an object a has all the functionality of

another object b, then we may use a in any context

expecting b.

� The basic principle associated with subtyping is

substitutivity: If A is a subtype of B, then any expression

of type A may be used without type error in any context

that requires an expression of type B.

92

www.manaraa.com

/. -,
() *+Inheritance

� Inheritance is the ability to reuse the definition of one

kind of object to define another kind of object.

� The importance of inheritance is that it saves the effort

of duplicating (or reading duplicated) code and that,

when one class is implemented by inheriting from

another, changes to one affect the other. This has a

significant impact on code maintenance and

modification.

93

www.manaraa.com

History of objects
SIMULA and Smalltalk

� Objects were invented in the design of SIMULA and

refined in the evolution of Smalltalk.

� SIMULA: The first object-oriented language.

The object model in SIMULA was based on procedures

activation records, with objects originally described as

procedures that return a pointer to their own activation

record.

� Smalltalk: A dynamically typed object-oriented language.

Many object-oriented ideas originated or were

popularised by the Smalltalk group, which built on Alan

Kay’s then-futuristic idea of the Dynabook.

94

www.manaraa.com

SIMULA

� Extremely influential as the first language with classes

objects, dynamic lookup, subtyping, and inheritance.

� Originally designed for the purpose of simulation by

O.-J. Dahl and K. Nygaard at the Norwegian Computing

Center, Oslo, in the 1960s.

� SIMULA was designed as an extension and modification

of Algol 60. The main features added to Algol 60 were:

class concepts and reference variables (pointers to

objects); pass-by-reference; input-output features;

coroutines (a mechanism for writing concurrent programs).

95

www.manaraa.com

� A generic event-based simulation program

Q := make_queue(initial_event);

repeat

select event e from Q

simulate event e

place all events generated by e on Q

until Q is empty

naturally requires:

� A data structure that may contain a variety of kinds

of events. ❀ subtyping

� The selection of the simulation operation according to

the kind of event being processed. ❀ dynamic lookup

� Ways in which to structure the implementation of

related kinds of events. ❀ inheritance

96

www.manaraa.com

SIMULA
Object-oriented features

� Objects: A SIMULA object is an activation record

produced by call to a class.

� Classes: A SIMULA class is a procedure that returns

a pointer to its activation record. The body of a class

may initialise the objects it creates.

� Dynamic lookup: Operations on an object are selected

from the activation record of that object.

� Abstraction: Hiding was not provided in SIMULA 67 but

was added later and used as the basis for C++.

97

www.manaraa.com

� Subtyping: Objects are typed according to the classes

that create them. Subtyping is determined by class

hierarchy.

� Inheritance: A SIMULA class may be defined, by class

prefixing, as an extension of a class that has already

been defined including the ability to redefine parts of a

class in a subclass.

98

www.manaraa.com

SIMULA
Sample code

CLASS POINT(X,Y); REAL X, Y;

COMMENT***CARTESIAN REPRESENTATION

BEGIN

BOOLEAN PROCEDURE EQUALS(P); REF(POINT) P;

IF P =/= NONE THEN

EQUALS := ABS(X-P.X) + ABS(Y-P.Y) < 0.00001;

REAL PROCEDURE DISTANCE(P); REF(POINT) P;

IF P == NONE THEN ERROR ELSE

DISTANCE := SQRT((X-P.X)**2 + (Y-P.Y)**2);

END***POINT***

99

www.manaraa.com

CLASS LINE(A,B,C); REAL A,B,C;

COMMENT***Ax+By+C=0 REPRESENTATION

BEGIN

BOOLEAN PROCEDURE PARALLELTO(L); REF(LINE) L;

IF L =/= NONE THEN

PARALLELTO := ABS(A*L.B - B*L.A) < 0.00001;

REF(POINT) PROCEDURE MEETS(L); REF(LINE) L;

BEGIN REAL T;

IF L =/= NONE and ~PARALLELTO(L) THEN

BEGIN

...

MEETS :- NEW POINT(...,...);

END;

END;***MEETS***

100

www.manaraa.com

SIMULA
Subclasses and inheritance

SIMULA syntax for a class C1 with subclasses C2 and C3 is

CLASS C1

<DECLARATIONS1>;

C1 CLASS C2

<DECLARATIONS2>;

C1 CLASS C3

<DECLARATIONS3>;

When we create a C2 object, for example, we do this by first

creating a C1 object (activation record) and then appending a

C2 object (activation record).

101

www.manaraa.com

Example:

POINT CLASS COLOREDPOINT(C); COLOR C;

BEGIN

BOOLEAN PROCEDURE EQUALS(Q); REF(COLOREDPOINT) Q;

...;

END***COLOREDPOINT**

REF(POINT) P; REF(COLOREDPOINT) CP;

P :- NEW POINT(1.0,2.5);

CP :- NEW COLOREDPOINT(2.5,1.0,RED);

NB: SIMULA 67 did not hide fields. Thus,

CP.C := BLUE;

changes the color (colour) of the point referenced by CP.

102

www.manaraa.com

SIMULA
Object types and subtypes

� All instances of a class are given the same type. The

name of this type is the same as the name of the class.

� The class names (types of objects) are arranged in a

subtype hierarchy corresponding exactly to the subclass

hierarchy.

103

www.manaraa.com

Examples:

1. CLASS A; A CLASS B;

REF(A) a; REF(B) b;

a :- b; COMMENT***legal since B is

***a subclass of A

...

b :- a; COMMENT***also legal, but checked at

***run time to make sure that

***a points to a B object, so

***as to avoid a type error

104

www.manaraa.com

2. An error in the original SIMULA type checker.

For CLASS A; A CLASS B, SIMULA subclassing produces

the subtype relation B <: A.

But SIMULA also uses the semantically incorrect principle

that, if B<:A then REF(B)<:REF(A).

So, this code . . .

REF(A) a; REF(B) b;

PROCEDURE ASSIGNa(REF(A) x)

BEGIN x :- a END;

ASSIGNa(b);

. . . will statically type check, but may cause a type error

at run time.

105

www.manaraa.com

Smalltalk

� The object metaphor was extended and refined.

� Used some ideas from SIMULA; but it was a

completely new language, with new terminology and

an original syntax.

� Abstraction via private instance variables (data

associated with an object) and public methods (code

for performing operations).

� Everything is an object; even a class. All operations

are messages to objects.

� Objects and classes were shown useful organising

concepts for building an entire programming

environment and system.

106

www.manaraa.com

Smalltalk
Terminology

� Object: A combination of private data and functions. Each

object is an instance of some class.

� Class: A template defining the implementation of a set of

objects.

� Subclass: Class defined by inheriting from its superclass.

� Selector: The name of a message (analogous to a

function name).

� Message: A selector together with actual parameter

values (analogous to a function call).

� Method: The code in a class for responding to a message.

� Instance variable: Data stored in an individual

object (instance class).

107

www.manaraa.com

Smalltalk
Classes and objects

class name Point

super class Object

class var pi

instance var x, y

class messages and methods

<. . . names and codes for methods . . . >

instance messages and methods

<. . . names and codes for methods . . . >

Definition of Point class

108

www.manaraa.com

A class message and method for point objects

newX:xvalue Y:yvalue ||

^ self new x: xvalue y: yvalue

A new point at coordinates (3, 4) is created when the message

newX:3 Y:4

is sent to the Point class.

For instance:

p <- Point newX:3 Y:4

109

www.manaraa.com

Smalltalk
Inheritance

class name ColoredPoint

super class Point

class var

instance var color

class messages and methods

newX:xv Y:yv C:cv <. . . code . . . >

instance messages and methods

color ||^color

draw <. . . code . . . >

Definition of ColoredPoint class

110

www.manaraa.com

Smalltalk
Abstraction

Smalltalk rules:

� Methods are public.

� Instance variables are protected.

111

www.manaraa.com

Smalltalk
Dynamic lookup

The run-time structures used for Smalltalk classes and objects

support dynamic lookup in two ways.

1. Methods are selected through the receiver object.

2. Method lookup starts with the method dictionary of the

class of the receiver and then proceeds upwards through

the class hierarchy.

112

www.manaraa.com

Smalltalk
Self and super

� The special symbol self may be used in the body of a

Smalltalk method. The special property of self is that it

always refers to the object that contains this method,

whether directly or by inheritance.

� The special symbol super is similar to self, except that,

when a message is sent to super, the search for the

appropriate method body starts with the superclass of the

object instead of the class of the object. This mechanism

provides a way of accessing a superclass version of a

method that has been overridden in the subclass.

113

www.manaraa.com

Example: A factorial method

factorial ||

self <= 1

ifTrue: [^1]

ifFalse: [^ (self-1) factorial * self]

in the Integer class for

Integer

SmallInt

♣♣♣♣♣♣♣♣♣♣♣

LargeInt

◆◆◆◆◆◆◆◆◆◆◆

114

www.manaraa.com

Smalltalk
Subtyping

Type A is a subtype of type B if any context

expecting an expression of type B may take any

expression of type A without introducing a type error.

Semantically, in Smalltalk, it makes sense to associate

subtyping with the superset relation on class interfaces.

115

www.manaraa.com

Smalltalk
Object-oriented features

� Objects: A Smalltalk object is created by a class.

� Classes: A Smalltalk class defines variables, class

methods, and the instance methods that are shared

by all objects of the class.

� Abstraction: Abstraction is provided through protected

instance variables. All methods are public but instance

variables may be accessed only by the methods of the

class and methods of subclasses.

116

www.manaraa.com

� Subtyping: Smalltalk does not have a compile-time type

system. Subtyping arises implicitly through relations

between the interfaces of objects. Subtyping depends on

the set of messages that are understood by an object, not

the representation of objects or whether inheritance is

used.

� Inheritance: Smalltalk subclasses inherit all instance

variables and methods of their superclasses. Methods

defined in a superclass may be redefined in a subclass or

deleted.

117

www.manaraa.com

˜ Topic VI ˜
Languages for Concurrency and Parallelism

118

www.manaraa.com

Sources of parallel computing

Five main sources:

1. Theoretical models: PRAM, BSP (complexity theory),

CSP, CCS, π-calculus (semantic theory),

Actors (programming model).

2. Multi-core CPUs (possibly heterogeneous—mobile

phones).

3. Graphics cards (just unusual SIMD multi-core CPUs).

4. Supercomputers (mainly for scientific computing).

5. Cluster Computing, Cloud Computing.

NB: Items 2–5 conceptually only differ in processor-memory

communication.

119

www.manaraa.com

Language groups

1. Theoretical models (PRAM, π-calculus, Actors, etc.).

2. C/C++ and roll-your-own using pthreads.

3. Pure functional programming (‘free’ distribution).

4. [Multi-core CPUs] Open/MP, Java (esp. Java 8), Open/MP,

Cilk, X10.

5. [Graphics cards] CUDA (Nvidia), OpenCL (open

standard).

6. [Supercomputers] MPI.

7. [Cloud Computing] MapReduce, Hadoop, Skywriting.

8. [On Chip] Verilog, Bluespec.

NB: Language features may fit multiple architectures.

120

www.manaraa.com

Painful facts of parallel life

1. Single-core clock speeds have stagnated at around 3GHz

for the last ten years. Moore’s law continues to give more

transistors (hence multi-core, many-core, giga-core).

2. Inter-processor communication is far far far more

expensive than computation (executing an instruction).

3. Can’t the compiler just take my old C/Java/Fortran (or

ML/Haskell) program and, you know, parallelise it? Just

another compiler optimisation? NO! (Compiler

researchers’ pipe-dream/elephants’ graveyard.)

Takeaway: optimising performance requires exploiting

parallelism, you’ll have to program this yourself, and getting it

wrong gives slow-downs and bugs due to races.

121

www.manaraa.com

A programmer ′s view of memory
✛
✚

✘
✙CPU ✲

1 cycle

✛
✚

✘
✙MEMORY

(This model was pretty accurate in 1985.)

A 2004-era single-core view of memory
and timings

✛
✚

✘
✙CPU ✲

2

✛
✚

✘
✙L1 cache ✲

10

✛
✚

✘
✙L2 cache ✲

200

✛
✚

✘
✙MEMORY

122

www.manaraa.com

Multi-core-chip memory models

Today’s model (cache simplified to one level):

✤
✣

✜
✢CPU 0 ✲

2

✤
✣

✜
✢CACHE 0

✤
✣

✜
✢CPU 1–15 ✲

2
✤
✣

✜
✢

CACHES
1–15

✤
✣

✜
✢

other CPU
or GPU etc

✲

2

✤
✣

✜
✢

FAST
MEMORY

❄

✲✻
❄

coherency

✻
❄

incoherency ✛DMA

�
��✒

❅
❅❅❘

200

200✤
✣

✜
✢MEMORY

123

www.manaraa.com

A Compute Cluster or Cloud-Computing Server

✤
✣

✜
✢

Multicore
CPU 0

✲

✤
✣

✜
✢

MEMORY
0

✲

✤
✣

✜
✢

NIC
0

✤
✣

✜
✢

Multicore
CPU 1

✲

✤
✣

✜
✢

MEMORY
1

✲

✤
✣

✜
✢

NIC
1

✤
✣

✜
✢

Multicore
CPU 999,999

✲

✤
✣

✜
✢

MEMORY
999,999

✲

✤
✣

✜
✢

NIC
999,999

✻
❄

no connection

✻
❄

no connection

✻
❄

Network e.g. Ethernet

✻
❄

Network e.g. Ethernet

(The sort of thing which Google uses.)

124

www.manaraa.com

Lecture topic: what programming abstractions?

� We’ve got a large (and increasing) number of processors

available for use within each ‘device’

� This holds at multiple levels of scale (from on-chip to

on-cloud). “Fractal”

� Memory is local to processor units (at each scale)

� Communication (message passing) between units is much

slower than computation.

Question: what are good programming abstractions for a

system containing lots of processors?

Answer: rest of this lecture.

125

www.manaraa.com

What hardware architecture tells us

� Communication latency is far higher than instruction

execution time (2–6 orders of magnitude)

� So, realistically a task needs to have need at least 104

instructions for it to be worth moving to another CPU.

� Long-running independent computations fit the hardware

best.

� “Shared memory” is an illusion. At the lowest level it is

emulated by message passing in the cache-coherency

protocol.

� Often best to think of multi-core processors as distributed

systems.

126

www.manaraa.com

Communication abstractions for programming

� “Head in sand”: What communication – I’m just using a

multi-core CPU?

� “Principled head in sand”: the restrictions in my

programming language means I can leave this to

someone else (or even the compiler).

� Just use TCP/IP.

� Shared memory, message passing, RMI/RPC?

� Communication is expensive, expose it to programmer

(no lies about ‘shared memory’).

Ask: language ⇒ programmer model of communication?

127

www.manaraa.com

Concurrent, Parallel, Distributed

These words are often used informally as near synonyms.

� Distributed systems have separate processors connected

by a network, perhaps on-chip (multi-core)?

� ‘Parallel’ suggests multiple CPUs or even SIMD, but

“parallel computation” isn’t clearly different from

“concurrency”.

� Concurrent behaviour can happen on a single-core CPU

(e.g. Operating System and threads), Theorists often

separate ‘true concurrency’ (meaning parallel behaviour)

from ‘interleaving concurrency’.

128

www.manaraa.com

SIMD, MIMD

Most parallel systems nowadays are MIMD.

GPUs (graphical processor units) are a bit of an exception;

several cores execute the same instructions, perhaps

conditionally based on a previous test which sets

per-processor condition codes.

Programming Languages for GPUs (OpenCL, CUDA)

emphasise the idea of a single program which is executed by

many tasks. A program can enquire to find out the numerical

value of its task identifier, originally its (x, y) co-ordinate, to

behave differently at different places (in addition to having

separate per-task pixel data).

129

www.manaraa.com

Theoretical model – process algebra

CCS, CSP, Pi-Calculus (calculus = “simple programming

language”). E.g.

Atomic actions α, α, can communicate with each other or the

world (non-deterministically if multiple partners offered).

Internal communication gives special internal action τ.

Behaviour p ::= 0 | α.p | p+ p | p|p | X | rec X.p

(Deadlock, prefixing, non-determinism, parallelism, recursive

definitions, also (not shown) parameterisation/hiding and

value-passing.)

Typical questions: “is α.0|β.0 the same as α.β.0+ β.α.0” and

“what does it mean for two behaviours to be equal”

Part II course.

130

www.manaraa.com

Theoretical model – PRAM model

PRAM: parallel random-access machine.

N shared memory locations and P processors (both

unbounded); each processor can access any location in one

cycle.

Execute instructions in lock-step (often SIMD, but MIMD within

the model): fetch data, do operation, write result.

Typical question: “given n items can we sort them in O(n)

time, or find the maximum in O(1) time”

BSP (bulk-synchronous parallel) model refines PRAM by

adding costs for communication and synchronisation.

New Part II course in 2014/15.

131

www.manaraa.com

Oldest idea : Threads

Java threads – either extend Thread or implement Runnable:

class PrimeRun implements Runnable {

long minPrime;

PrimeRun(long m) { minPrime = m; }

public void run() {

// compute primes larger than minPrime

}

}

...

p = new PrimeRun(143); // create a thread

new Thread(p).start(); // run it

Posix’s pthreads are similar.

132

www.manaraa.com

Threads, andwhat ′s wrongwith them

� Need explicit synchronisation. Error prone.

� Because they’re implemented as library calls, the compiler

(and often users) cannot work out where they start and

end.

� pthreads as OS-level threads. Need context switch.

Heavyweight.

� Various lightweight-thread systems. Often

non-preemptive. Blocking operations can block all

lightweight operations sharing the same OS thread.

� Number of threads pretty hard-coded into your program.

133

www.manaraa.com

Language support : Cilk

Cilk [example from Wikipedia]

cilk int fib (int n)

{ int x,y;

if (n < 2) return n;

x = spawn fib (n-1);

y = spawn fib (n-2);

sync;

return x+y;

}

Compiler/run-time library can manage threads. Neat

implementation by “work stealing”. Can adapt to hardware.

X10 (IBM) adds support for partitioned memory.

134

www.manaraa.com

Language support : OpenMP

OpenMP [example from Wikipedia]

int main(int argc, char *argv[]) {

const int N = 100000;

int i, a[N];

#pragma omp parallel for

for (i = 0; i < N; i++)

a[i] = 2 * i;

return 0;

}

The directive “omp parallel for” tells the compiler “it is safe to

do the iterations in parallel”.

Fortran “FORALL INDEPENDENT”.

135

www.manaraa.com

Clusters/Cloud Computing

Memory support for threads, Cilk, OpenMP centres around a

shared address space. (Even if secretly multi-core machines

behave like distributed machines.)

What about clusters? Cloud Computing?

More emphasis on message-passing . . .

136

www.manaraa.com

Software support for message passing: MPI

MPI = Message Passing Interface [nothing to do with

OpenMP]

“de facto standard for communication among processes that

model a parallel program running on a distributed memory

system.” [no shared memory].

Standardised API calls for transferring data and synchronising

iterations. Message passing is generally synchronous,

suitable for repeated sweeps over scientific data.

Emphasis on message passing (visible and expensive-looking

to user) means that MPI programs can work surprisingly well

on multi-core, because they encourage within-core locality.

137

www.manaraa.com

Software support for message passing: Erlang

Shared-nothing language based on the actor model

(asynchronous message passing).

Dynamically typed, functional-style (no assignment).

Means tasks can just commit suicide if they feel there’s a

problem and someone else fixes things, including restarting

them

Relatively easy to support hot-swapping of code.

138

www.manaraa.com

Cloud Computing (1)

Can mean either “doing one computer’s worth of work on a

server instead of locally”. Google Docs. Or . . .

139

www.manaraa.com

Cloud Computing (2)

. . . massively parallel combinations of computing, e.g.

MapReduce invoked by a search engine.

MapReduce can match a search term against many

computers (Map) each holding part of Google index of words,

and then combine these result (Reduce).

Reduce here means parallel reduce (tree-like, logarithmic

cost), not foldl or foldr from ML.

Functional style (idempotency) useful for error resilience

(errors happen often in big computations). Try to ensure

computation units are larger than cost of transmitting

arguments and results. (also: Skywriting project in Cambridge)

140

www.manaraa.com

Embarrassingly Parallel

Program having many separate sub-units of work (typically

more than the number of processors) which

� do not interact (no communication between them, not

even via shared memory)

� are large

Example: the map part of MapReduce.

141

www.manaraa.com

Functional Programming

In pure functional programming every tuple (perhaps an

argument list to an application) can be evaluated in parallel.

So functional programming is embarrassingly parallel?

Not in general (i.e. not enough for compilers to be able to

choose the parallelism for you). Need to find sub-executions

with X

� little data to transfer at spawn time (because it needs

copying, even if memory claims to be shared);

� a large enough unit of work to be done before return

Probably only certain stylised code.

142

www.manaraa.com

Garbage Collection

While we’re talking about functional programming, and as

garbage collection has previously been mentioned . . .

Just how do we do garbage collection across multiple cores?

� Manage data so that data structures do not move from

one processor to another?

� “Stop the world” GC with one big lock doesn’t look like it

will work.

� Parallel GC: use multiple cores for GC). Concurrent GC:

do GC which the mutator (user’s program) is running.

Hard?

� Incremental? Track imported/exported pointers?

143

www.manaraa.com

Java 8: Internal vs External iteration

Can’t trust users to iterate over data. They start with

for (i : collection)

{ // whatever

}

and then get lazy. Do we want to write this?

for (k = 0; k<NUMPROCESSORS; k++}

{ spawn for (i : subpart(collection,k))

{ // whatever

}

}

sync;

// combine results from sub-parts here

144

www.manaraa.com

Internal vs External iteration (2)

Previous slide was external iteration. It’s hard to parallelise

(especially in Java where iterators have shared mutable state).

The Java 8 Streams library encourages internal iteration –

keep the iterator in the library, and use ML-like stream

operation to encode the body of the loop

maxeven = collection.toStream().parallel()

.filter(x -> x%2 == 0)

.max();

The library can optimise the iteration based on the number of

threads available (and do a better job than users make!). The

Java 8 API ensures that a Stream pipeline like the above only

traverses the data once.

145

www.manaraa.com

˜ Topic VII ˜
Types in programming languages

References:

� Chapter 6 of Concepts in programming languages

by J. C. Mitchell. CUP, 2003.

� Sections 4.9 and 8.6 of Programming languages:

Concepts & constructs by R. Sethi (2ND EDITION).

Addison-Wesley, 1996.

146

www.manaraa.com

Types in programming

� A type is a collection of computational entities that share

some common property.

� There are three main uses of types in programming

languages:

1. naming and organising concepts,

2. making sure that bit sequences in computer memory

are interpreted consistently,

3. providing information to the compiler about data

manipulated by the program.

147

www.manaraa.com

� Using types to organise a program makes it easier

for someone to read, understand, and maintain the

program. Types can serve an important purpose in

documenting the design and intent of the program.

� Type information in programs can be used for many

kinds of optimisations.

148

www.manaraa.com

Type systems

A type system for a language is a set of rules for associating a

type with phrases in the language.

Terms strong and weak refer to the effectiveness with which

a type system prevents errors. A type system is strong if it

accepts only safe phrases. In other words, phrases that are

accepted by a strong type system are guaranteed to evaluate

without type error. A type system is weak if it is not strong.

149

www.manaraa.com

Type safety

A programming language is type safe if no program is

allowed to violate its type distinctions.

Safety Example language Explanation

Not safe C, C++ Type casts,

pointer arithmetic

Almost safe Pascal Explicit deallocation;

dangling pointers

Safe LISP, SML, Smalltalk, Java Type checking

150

www.manaraa.com

Type checking

A type error occurs when a computational entity is used in a

manner that is inconsistent with the concept it represents.

Type checking is used to prevent some or all type errors,

ensuring that the operations in a program are applied properly.

Some questions to be asked about type checking in a

language:

� Is the type system strong or weak?

� Is the checking done statically or dynamically?

� How expressive is the type system; that is, amongst safe

programs, how many does it accept?

151

www.manaraa.com

Static and dynamic type checking

Run-time type checking: The compiler generates code

so that, when an operation is performed, the code

checks to make sure that the operands have the

correct types.

Examples: LISP, Smalltalk.

Compile-time type checking: The compiler checks the

program text for potential type errors.

Example: SML.

NB: Most programming languages use some combination

of compile-time and run-time type checking.

152

www.manaraa.com

Java Downcasts

Consider the following Java program:

class A { ... }; A a;

class B extends A { ... }; B b;

Variable a has Java type A whose valid values are all those of

class A along with those of all classes subtyping class A (here

just class B).

Subtyping determines when a variable of one type can be

used as another (here used by assignment):

a = b;
√

(upcast)

a = (A)b;
√

(explicit upcast)

b = a; ×(implicit downcast—illegal Java)

b = (B)a;
√

(but needs run-time type-check)

Mixed static and dynamic type checking!

153

www.manaraa.com

Static vs. dynamic type checking

Main trade-offs between compile-time and run-time checking:

Form of type Advantages Disadvantages

checking

Run-time Prevents type errors Slows program

execution

Compile-time Prevents type errors May restrict

Eliminates run-time programming

tests because tests

Finds type errors before are conservative

execution and run-time

tests

154

www.manaraa.com

Type checking in ML
Idea

Given a context Γ , an expression e, and a type τ, decide

whether or not the expression e is of type τ in context Γ .

Examples:

�
Γ ⊢ e1 : bool Γ ⊢ e2 : bool

Γ ⊢ e1 orelse e2 : bool

TC(Γ, e1 orelse e2, τ)

=





TC(Γ, e1, bool)∧ TC(Γ, e2, bool) , if τ = bool

false , otherwise

155

www.manaraa.com

�
Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 ∗ τ2

TC(Γ, (e1, e2), τ)

=





TC(Γ, e1, τ1)∧ TC(Γ, e2, τ2) , if τ = τ1∗τ2
false , otherwise

156

www.manaraa.com

Type equality

The question of type equality arises during type checking.

? What does it mean for two types to be equal!?

Structural equality. Two type expressions are structurally

equal if and only if they are equivalent under the

following three rules.

SE1. A type name is structurally equal to itself.

SE2. Two types are structurally equal if they are

formed by applying the same type constructor

to structurally equal types.

SE3. After a type declaration, say type n = T, the

type name n is structurally equal to T.

157

www.manaraa.com

Name equality:

Pure name equality. A type name is equal to itself, but

no constructed type is equal to any other constructed

type.

Transitive name equality. A type name is equal to itself

and can be declared equal to other type names.

Type-expression equality. A type name is equal only to

itself. Two type expressions are equal if they are

formed by applying the same constructor to equal

expressions. In other words, the expressions have to

be identical.

158

www.manaraa.com

Examples:

� Type equality in Pascal/Modula-2. Type equality was

left ambiguous in Pascal. Its successor, Modula-2,

avoided ambiguity by defining two types to be compatible if

1. they are the same name, or

2. they are s and t, and s = t is a type declaration, or

3. one is a subrange of the other, or

4. both are subranges of the same basic type.

� Type equality in C/C++. C uses structural equivalence

for all types except for records (structs). struct types

are named in C and C++ and the name is treated as a

type, equal only to itself. This constraint saves C from

having to deal with recursive types.

159

www.manaraa.com

Type declarations

There are two basic forms of type declarations:

Transparent. An alternative name is given to a type that can

also be expressed without this name.

Opaque. A new type is introduced into the program that is

not equal to any other type.

160

www.manaraa.com

Type inference

� Type inference is the process of determining the types

of phrases based on the constructs that appear in them.

� An important language innovation.

� A cool algorithm.

� Gives some idea of how other static analysis algorithms

work.

161

www.manaraa.com

Type inference in ML
Idea

Typing rule:

Γ ⊢ x : τ
if x : τ in Γ

Inference rule:

Γ ⊢ x : γ
γ ≈ α if x : α in Γ

162

www.manaraa.com

Typing rule:

Γ ⊢ f : σ −> τ Γ ⊢ e : σ

Γ ⊢ f(e) : τ

Inference rule:

Γ ⊢ f : α Γ ⊢ e : β

Γ ⊢ f(e) : γ
α ≈ β −> γ

163

www.manaraa.com

Typing rule:

Γ, x : σ ⊢ e : τ

Γ ⊢ (fn x => e) : σ −> τ

Inference rule:

Γ, x : α ⊢ e : β

Γ ⊢ (fn x => e) : γ
γ ≈ α −> β

164

www.manaraa.com

Example:

√

f : α1, x : α3 ⊢ f : α5

√

f : α1, x : α3 ⊢ f : α7

√

f : α1, x : α3 ⊢ x : α8

f : α1, x : α3 ⊢ f(x) : α6

f : α1, x : α3 ⊢ f(f(x)) : α4

f : α1 ⊢ fn x => f(f(x)) : α2

⊢ fn f => fn x => f(f(x)) : α0

α0 ≈ α1−> α2 , α2 ≈ α3−> α4 , α5 ≈ α6−> α4 , α5 ≈ α1

α7 ≈ α8−> α6 , α7 ≈ α1 , α8 ≈ α3

Solution: α0 = (α3 −> α3)−> α3−> α3

165

www.manaraa.com

Polymorphism

Polymorphism, which literally means “having multiple forms”,

refers to constructs that can take on different types as needed.

Forms of polymorphism in contemporary programming

languages:

Parametric polymorphism. A function may be applied to any

arguments whose types match a type expression involving

type variables.

Parametric polymorphism may be:

Implicit.

Explicit.

166

www.manaraa.com

Ad hoc polymorphism or overloading. Two or more

implementations with different types are referred to by

the same name.

Subtype polymorphism. The subtype relation between

types allows an expression to have many possible types.

167

www.manaraa.com

let-polymorphism

� The standard sugaring

let val x = v in e end 7→ (fn x => e)(v)

does not respect ML type checking.

For instance

let val f = fn x => x in f(f) end

type checks, whilst

(fn f => f(f))(fn x => x)

does not.

� Type inference for let-expressions is involved, requiring

type schemes.

168

www.manaraa.com

Polymorphic exceptions

Example: Depth-first search for finitely-branching trees.

datatype

’a FBtree = node of ’a * ’a FBtree list ;

fun dfs P (t: ’a FBtree)

= let

exception Ok of ’a;

fun auxdfs(node(n,F))

= if P n then raise Ok n

else foldl (fn(t,_) => auxdfs t) NONE F ;

in

auxdfs t handle Ok n => SOME n

end ;

val dfs = fn : (’a -> bool) -> ’a FBtree -> ’a option

169

www.manaraa.com

When a polymorphic exception is declared, SML ensures

that it is used with only one type. The type of a top level

exception must be monomorphic and the type variables

of a local exception are frozen.

Consider the following nonsense:

exception Poly of ’a ; (*** ILLEGAL!!! ***)

(raise Poly true) handle Poly x => x+1 ;

170

www.manaraa.com

˜ Topic VIII ˜
Data abstraction and modularity

SML Modulesa

References:

� Chapter 7 of ML for the working programmer (2ND

EDITION) by L. C. Paulson. CUP, 1996.

aLargely based on an Introduction to SML Modules by Claudio Russo

<http://research.microsoft.com/~crusso>.

171

www.manaraa.com

The Core and Modules languages

SML consists of two sub-languages:

� The Core language is for programming in the small, by

supporting the definition of types and expressions

denoting values of those types.

� The Modules language is for programming in the large,

by grouping related Core definitions of types and

expressions into self-contained units, with descriptive

interfaces.

The Core expresses details of data structures and

algorithms. The Modules language expresses software

architecture. Both languages are largely independent.

172

www.manaraa.com

The Modules language
Writing a real program as an unstructured sequence of Core

definitions quickly becomes unmanageable.

type nat = int

val zero = 0

fun succ x = x + 1

fun iter b f i =

if i = zero then b

else f (iter b f (i-1))

...

(* thousands of lines later *)

fun even (n:nat) = iter true not n

The SML Modules language lets one split large programs into

separate units with descriptive interfaces.

173

www.manaraa.com

SML Modules
Signatures and structures

An abstract data type is a type equipped with a set of

operations, which are the only operations applicable to that

type.

Its representation can be changed without affecting the rest

of the program.

� Structures let us package up declarations of related

types, values, and functions.

� Signatures let us specify what components a structure

must contain.

174

www.manaraa.com

Structures
In Modules, one can encapsulate a sequence of Core type

and value definitions into a unit called a structure.

We enclose the definitions in between the keywords

struct . . . end.

Example: A structure representing the natural numbers, as

positive integers.

struct

type nat = int

val zero = 0

fun succ x = x + 1

fun iter b f i = if i = zero then b

else f (iter b f (i-1))

end

175

www.manaraa.com

The dot notation

One can name a structure by binding it to an identifier.

structure IntNat =

struct

type nat = int

...

fun iter b f i = ...

end

Components of a structure are accessed with the dot

notation.

fun even (n:IntNat.nat) = IntNat.iter true not n

NB: Type IntNat.nat is statically equal to int. Value

IntNat.iter dynamically evaluates to a closure.

176

www.manaraa.com

Nested structures

Structures can be nested inside other structures, in a hierarchy.

structure IntNatAdd =

struct

structure Nat = IntNat

fun add n m = Nat.iter m Nat.succ n

end

...

fun mult n m =

IntNatAdd.Nat.iter IntNatAdd.Nat.zero (IntNatAdd.add m) n

177

www.manaraa.com

Concrete signatures

Signature expressions specify the types of structures by

listing the specifications of their components.

A signature expression consists of a sequence of

component specifications, enclosed in between the

keywords sig . . . end.

sig type nat = int

val zero : nat

val succ : nat -> nat

val ’a iter : ’a -> (’a->’a) -> nat -> ’a

end

This signature fully describes the type of IntNat.

The specification of type nat is concrete: it must be int.

178

www.manaraa.com

Opaque signatures

On the other hand, the following signature

sig type nat

val zero : nat

val succ : nat -> nat

val ’a iter : ’a -> (’a->’a) -> nat -> ’a

end

specifies structures that are free to use any implementation for

type nat (perhaps int, or word, or some recursive datatype).

This specification of type nat is opaque.

179

www.manaraa.com

Example: Polymorphic functional stacks.

signature STACK =

sig

exception E

type ’a reptype (* <-- INTERNAL REPRESENTATION *)

val new: ’a reptype

val push: ’a -> ’a reptype -> ’a reptype

val pop: ’a reptype -> ’a reptype

val top: ’a reptype -> ’a

end ;

180

www.manaraa.com

structure MyStack: STACK =

struct

exception E ;

type ’a reptype = ’a list ;

val new = [] ;

fun push x s = x::s ;

fun split(h::t) = (h , t)

| split _ = raise E ;

fun pop s = #2(split s) ;

fun top s = #1(split s) ;

end ;

181

www.manaraa.com

val MyEmptyStack = MyStack.new ;

val MyStack0 = MyStack.push 0 MyEmptyStack ;

val MyStack01 = MyStack.push 1 MyStack0 ;

val MyStack0’ = MyStack.pop MyStack01 ;

MyStack.top MyStack0’ ;

val MyEmptyStack = [] : ’a MyStack.reptype

val MyStack0 = [0] : int MyStack.reptype

val MyStack01 = [1,0] : int MyStack.reptype

val MyStack0’ = [0] : int MyStack.reptype

val it = 0 : int

182

www.manaraa.com

Named and nested signatures

Signatures may be named and referenced, to avoid repetition:

signature NAT =

sig type nat

val zero : nat

val succ : nat -> nat

val ’a iter : ’a -> (’a->’a) -> nat -> ’a

end

Nested signatures specify named sub-structures:

signature Add =

sig structure Nat: NAT (* references NAT *)

val add: Nat.nat -> Nat.nat -> Nat.nat

end

183

www.manaraa.com

Signature matching

Q: When does a structure satisfy a signature?

A: The type of a structure matches a signature whenever it

implements at least the components of the signature.

• The structure must realise (i.e. define) all of the opaque

type components in the signature.

• The structure must enrich this realised signature,

component-wise:

⋆ every concrete type must be implemented equivalently;

⋆ every specified value must have a more general type

scheme;

⋆ every specified structure must be enriched by a

substructure.

184

www.manaraa.com

Properties of signature matching

� The components of a structure can be defined in a

different order than in the signature; names matter but

ordering does not.

� A structure may contain more components, or

components of more general types, than are specified

in a matching signature.

� Signature matching is structural. A structure can match

many signatures and there is no need to pre-declare its

matching signatures (unlike “interfaces” in Java and C#).

� Although similar to record types, signatures actually

play a number of different roles.

185

www.manaraa.com

Subtyping

Signature matching supports a form of subtyping not found in

the Core language:

� A structure with more type, value, and structure

components may be used where fewer components

are expected.

� A value component may have a more general type

scheme than expected.

186

www.manaraa.com

Using signatures to restrict access

The following structure uses a signature constraint to provide

a restricted view of IntNat:

structure ResIntNat =

IntNat : sig type nat

val succ : nat->nat

val iter : nat->(nat->nat)->nat->nat

end

NB: The constraint str:sig prunes the structure str

according to the signature sig:

� ResIntNat.zero is undefined;

� ResIntNat.iter is less polymorphic that IntNat.iter.

187

www.manaraa.com

Transparency of :

Although the : operator can hide names, it does not conceal

the definitions of opaque types.

Thus, the fact that ResIntNat.nat = IntNat.nat = int remains

transparent.

For instance the application ResIntNat.succ(~3) is still

well-typed, because ~3 has type int . . . but ~3 is negative, so

not a valid representation of a natural number!

188

www.manaraa.com

SML Modules
Information hiding

In SML, we can limit outside access to the components of

a structure by constraining its signature in transparent or

opaque manners.

Further, we can hide the representation of a type by means

of an abstype declaration.

The combination of these methods yields abstract structures.

189

www.manaraa.com

Using signatures to hide
the identity of types

With different syntax, signature matching can also be used to

enforce data abstraction:

structure AbsNat =

IntNat :> sig type nat

val zero: nat

val succ: nat->nat

val ’a iter: ’a->(’a->’a)->nat->’a

end

The constraint str :> sig prunes str but also generates a

new, abstract type for each opaque type in sig.

190

www.manaraa.com

� The actual implementation of AbsNat.nat by int is

hidden, so that AbsNat.nat 6= int.

AbsNat is just IntNat, but with a hidden type

representation.

� AbsNat defines an abstract datatype of natural numbers:

the only way to construct and use values of the abstract

type AbsNat.nat is through the operations, zero, succ,

and iter.

E.g., the application AbsNat.succ(~3) is ill-typed: ~3 has

type int, not AbsNat.nat. This is what we want, since ~3

is not a natural number in our representation.

In general, abstractions can also prune and specialise

components.

191

www.manaraa.com

Opaque signature constraints

structure MyOpaqueStack :> STACK = MyStack ;

val MyEmptyOpaqueStack = MyOpaqueStack.new ;

val MyOpaqueStack0 = MyOpaqueStack.push 0 MyEmptyOpaqueStack ;

val MyOpaqueStack01 = MyOpaqueStack.push 1 MyOpaqueStack0 ;

val MyOpaqueStack0’ = MyOpaqueStack.pop MyOpaqueStack01 ;

MyOpaqueStack.top MyOpaqueStack0’ ;

val MyEmptyOpaqueStack = - : ’a MyOpaqueStack.reptype

val MyOpaqueStack0 = - : int MyOpaqueStack.reptype

val MyOpaqueStack01 = - : int MyOpaqueStack.reptype

val MyOpaqueStack0’ = - : int MyOpaqueStack.reptype

val it = 0 : int

192

www.manaraa.com

Datatype and exception specifications

Signatures can also specify datatypes and exceptions:

structure PredNat =
struct datatype nat = zero | succ of nat

fun iter b f i = ...
exception Pred
fun pred zero = raise Pred

| pred (succ n) = n
end
:> sig datatype nat = zero | succ of nat

val iter: ’a->(’a->’a)->(nat->’a)
exception Pred
val pred: nat -> nat (* raises Pred *) end

This means that clients can still pattern match on datatype

constructors, and handle exceptions.

193

www.manaraa.com

SML Modules
Functors

� An SML functor is a structure that takes other

structures as parameters.

� Functors let us write program units that can be

combined in different ways. Functors can also

express generic algorithms.

194

www.manaraa.com

Functors

Modules also supports parameterised structures, called

functors.

Example: The functor AddFun below takes any

implementation, N, of naturals and re-exports it

with an addition operation.

functor AddFun(N:NAT) =

struct

structure Nat = N

fun add n m = Nat.iter n (Nat.succ) m

end

195

www.manaraa.com

� A functor is a function mapping a formal argument

structure to a concrete result structure.

� The body of a functor may assume no more

information about its formal argument than is

specified in its signature.

In particular, opaque types are treated as distinct type

parameters.

Each actual argument can supply its own, independent

implementation of opaque types.

196

www.manaraa.com

Functor application

A functor may be used to create a structure by applying it to

an actual argument:

structure IntNatAdd = AddFun(IntNat)

structure AbsNatAdd = AddFun(AbsNat)

The actual argument must match the signature of the formal

parameter—so it can provide more components, of more

general types.

Above, AddFun is applied twice, but to arguments that differ in

their implementation of type nat (AbsNat.nat 6= IntNat.nat).

197

www.manaraa.com

Example: Generic imperative stacks.

signature STACK =

sig

type itemtype

val push: itemtype -> unit

val pop: unit -> unit

val top: unit -> itemtype

end ;

198

www.manaraa.com

exception E ;

functor Stack(T: sig type atype end) : STACK =

struct

type itemtype = T.atype

val stack = ref([]: itemtype list)

fun push x

= (stack := x :: !stack)

fun pop()

= case !stack of [] => raise E

| _::s => (stack := s)

fun top()

= case !stack of [] => raise E

| t::_ => t

end ;

199

www.manaraa.com

structure intStack

= Stack(struct type atype = int end) ;

structure intStack : STACK

intStack.push(0) ;

intStack.top() ;

intStack.pop() ;

intStack.push(4) ;

val it = () : unit

val it = 0 : intStack.itemtype

val it = () : unit

val it = () : unit

200

www.manaraa.com

Why functors ?

Functors support:

Code reuse.

AddFun may be applied many times to different

structures, reusing its body.

Code abstraction.

AddFun can be compiled before any

argument is implemented.

Type abstraction.

AddFun can be applied to different types N.nat.

201

www.manaraa.com

Are signatures types ?

The syntax of Modules suggests that signatures are just the

types of structures . . . but signatures can contain opaque types.

In general, signatures describe families of structures, indexed

by the realisation of any opaque types.

The interpretation of a signature really depends on how it is

used!

In functor parameters, opaque types introduce polymorphism;

in signature constraints, opaque types introduce abstract types.

Since type components may be type constructors, not just

types, this is really higher-order polymorphism and

abstraction.

202

www.manaraa.com

Structures as records

Structures are like Core records, but can contain definitions of

types as well as values.

What does it mean to project a type component from a

structure, e.g. IntNatAdd.Nat.nat?

Does one needs to evaluate the application AddFun(IntNat)

at compile-time to simplify IntNatAdd.Nat.nat to int?

No! Its sufficient to know the compile-time types of AddFun

and IntNat, ensuring a phase distinction between

compile-time and run-time.

203

www.manaraa.com

Type propagation through functors

Each functor application propagates the actual realisation of

its argument’s opaque type components.

Thus, for

structure IntNatAdd = AddFun(IntNat) structure AbsNatAdd

= AddFun(AbsNat)

the type IntNatAdd.Nat.nat is just another name for int, and

AbsNatAdd.Nat.nat is just another name for AbsNat.nat.

Examples: IntNatAdd.Nat.succ(0)
√

IntNatAdd.Nat.succ(IntNat.Nat.zero)
√

AbsNatAdd.Nat.succ(AbsNat.Nat.zero)
√

AbsNatAdd.Nat.succ(0) ×

AbsNatAdd.Nat.succ(IntNat.Nat.zero) ×

204

www.manaraa.com

Generativity

The following functor almost defines an identity function, but

re-abstracts its argument:

functor GenFun(N:NAT) = N :> NAT

Now, each application of GenFun generates a new abstract

type: For instance, for

structure X = GenFun(IntNat) structure Y = GenFun(IntNat)

the types X.nat and Y.nat are incompatible, even though

GenFun was applied to the same argument.

Functor application is generative: abstract types from the

body of a functor are replaced by fresh types at each

application. This is consistent with inlining the body of a

functor at applications.

205

www.manaraa.com

Why should functors be generative ?

It is really a design choice. Often, the invariants of the body of

a functor depend on both the types and values imported from

the argument.

206

www.manaraa.com

functor OrdSet(O:sig type elem

val compare: (elem * elem) -> bool

end) = struct

type set = O.elem list (* ordered list of elements *)

val empty = []

fun insert e [] = [e]

| insert e1 (e2::s) = if O.compare(e1,e2)

then if O.compare(e2,e1) then e2::s else e1::e2::s

else e2::insert e1 s

end :> sig type set

val empty: set

val insert: O.elem -> set -> set

end

207

www.manaraa.com

For

structure S

= OrdSet(struct type elem=int fun compare(i,j)= i <= j end)

structure R

= OrdSet(struct type elem=int fun compare(i,j)= i >= j end)

we want S.set 6= R.set because their representation

invariants depend on the compare function: the set {1, 2, 3}

is [1,2,3] in S.set, but [3,2,1] in R.set.

208

www.manaraa.com

Why functors ?

� Functors let one decompose a large programming task

into separate subtasks.

� The propagation of types through application lets one

extend existing abstract data types with type-compatible

operations.

� Generativity ensures that applications of the same functor

to data types with the same representation, but different

invariants, return distinct abstract types.

209

www.manaraa.com

Sharing specifications

Functors are often used to combine different argument

structures.

Sometimes, these structure arguments need to communicate

values of a shared type.

For instance, we might want to implement a sum-of-squares

function (n,m 7→ n2 +m2) using separate structures for

naturals with addition and multiplication . . .

210

www.manaraa.com

Sharing violations
functor SQ(

structure AddNat:

sig structure Nat: sig type nat end

val add:Nat.nat -> Nat.nat -> Nat.nat

end

structure MultNat:

sig structure Nat: sig type nat end

val mult:Nat.nat -> Nat.nat -> Nat.nat

end) =

struct

fun sumsquare n m

= AddNat.add (MultNat.mult n n) (MultNat.mult m m) ×

end

The above piece of code is ill-typed: the types

AddNat.Nat.nat and MultNat.Nat.nat are opaque, and thus

different. The add function cannot consume the results of mult.

211

www.manaraa.com

Sharing specifications

The fix is to declare the type sharing directly at the specification

of MultNat.Nat.nat, using a concrete, not opaque, specification:

functor SQ(

structure AddNat:

sig structure Nat: sig type nat end

val add: Nat.nat -> Nat.nat -> Nat.nat

end

structure MultNat:

sig structure Nat: sig type nat = AddNat.Nat.nat end

val mult: Nat.nat -> Nat.nat -> Nat.nat

end) =

struct

fun sumsquare n m

= AddNat.add (MultNat.mult n n) (MultNat.mult m m)
√

end

212

www.manaraa.com

Sharing constraints
Alternatively, one can use a post-hoc sharing specification to

identify opaque types.

functor SQ(
structure AddNat:

sig structure Nat: sig type nat end
val add:Nat.nat -> Nat.nat -> Nat.nat

end
structure MultNat:

sig structure Nat: sig type nat end
val mult:Nat.nat -> Nat.nat -> Nat.nat

end
sharing type MultNat.Nat.nat = AddNat.Nat.nat

) =
struct

fun sumsquare n m
= AddNat.add (MultNat.mult n n) (MultNat.mult m m)

√

end

213

www.manaraa.com

Limitations of modules

Modules is great for expressing programs with a complicated

static architecture, but it’s not perfect:

� Functors are first-order : unlike Core functions, a functor

cannot be applied to, nor return, another functor.

� Structure and functors are second-class values, with

very limited forms of computation (dot notation and

functor application): modules cannot be constructed

by algorithms or stored in data structures.

� Module definitions are too sequential : splitting mutually

recursive types and values into separate modules is

awkward.

214

www.manaraa.com

˜ Topic IX ˜
A modern language design : Scala

< www.scala-lang.org >

References:

� Scala By Example by M. Odersky. Programming

Methods Laboratory, EPFL, 2008.

� An overview of the Scala programming language by

M. Odersky et al. Technical Report

LAMP-REPORT-2006-001, Second Edition, 2006.

215

www.manaraa.com

Scala (I)

� Scala has been developed from 2001 in the Programming

Methods Laboratory at EPFL by a group lead by Martin

Odersky. It was first released publicly in 2004, with a

second version released in 2006.

� Scala is aimed at the construction of components and

component systems.

One of the major design goals of Scala was that it should

be flexible enough to act as a convenient host language

for domain specific languages implemented by library

modules.

216

www.manaraa.com

� Scala has been designed to work well with Java and

C#.

Every Java class is seen in Scala as two entities, a

class containing all dynamic members and a singleton

object, containing all static members.

Scala classes and objects can also inherit from Java

classes and implement Java interfaces. This makes it

possible to use Scala code in a Java framework.

� Scala’s influences: Beta, C#, FamilyJ, gbeta, Haskell,

Java, Jiazzi, ML≤, Moby, MultiJava, Nice, OCaml,

Pizza, Sather, Smalltalk, SML, XQuery, etc.

217

www.manaraa.com

A procedural language !
def qsort(xs: Array[Int]) {

def swap(i: Int, j:Int) {
val t = xs(i); xs(i) = xs(j); xs(j) = t

}
def sort(l: Int, r: Int) {

val pivot = xs((l+r)/2); var i = l; var j = r

while (i <= j) {
while (lt(xs(i), pivot)) i += 1

while (lt(xs(j), pivot)) j -= 1

if (i<=j) { swap(i,j); i += 1; j -= 1 }
}
if (l<j) sort(l,j)

if (j<r) sort(i,r)

}
sort(0,xs.length-1)

}

218

www.manaraa.com

NB:

� Definitions start with a reserved word.

� Type declarations use the colon notation.

� Array selections are written in functional notation.

(In fact, arrays in Scala inherit from functions.)

� Block structure.

219

www.manaraa.com

A declarative language !

def qsort[T](xs: Array[T])(lt: (T,T)=>Boolean): Array[T]

= if (xs.length <= 1) xs

else {
val pivot = xs(xs.length/2)

Array.concat(qsort(xs filter (x => lt(x,pivot))) lt ,

xs filter (x => x == pivot) ,

qsort(xs filter (x => lt(pivot,x))) lt)

}

220

www.manaraa.com

NB:

� Polymorphism.

� Type declarations can often be omitted because the

compiler can infer it from the context.

� Higher-order functions.

� The binary operation e ⋆ e ′ is always interpreted a the

method call e. ⋆ (e ′).

� The equality operation == between values is designed

to be transparent with respect to the type

representation.

221

www.manaraa.com

Scala (II)

Scala fuses (1) object-oriented programming and (2) functional

programming in a statically typed programming language.

1. Scala uses a uniform and pure object-oriented model

similar to that of Smalltalk: Every value is an object and

every operation is a message send (that is, the invocation

of a method).

In fact, even primitive types are not treated specially; they

are defined as type aliases of Scala classes.

2. Scala is also a functional language in the sense that

functions are first-class values.

222

www.manaraa.com

Mutable state

� Real-world objects with state are represented in Scala

by objects that have variables as members.

� In Scala, all mutable state is ultimately built from

variables.

� Every defined variable has to be initialised at the point of

its definition.

� Variables may be private.

223

www.manaraa.com

Blocks

Scala is an expression-oriented language, every function

returns some result.

Blocks in Scala are themselves expressions. Every block

ends in a result expression which defines its value.

Scala uses the usual block-structured scoping rules.

224

www.manaraa.com

Functions

A function in Scala is a first-class value.

The anonymous function

(x1: T1, ... , xn: Tn) => E

is equivalent to the block

{ def f (x1: T1 , ... , xn: Tn) = E ; f }

where f is a fresh name which is used nowhere else in

the program.

225

www.manaraa.com

Parameter passing

Scala uses call-by-value by default, but it switches to

call-by-name evaluation if the parameter type is preceded

by =>.

Imperative control structures

A functional implementation of while loops:

def whileLoop(cond: => Boolean)(comm: => Unit)

{ if (cond) comm ; whileLoop(cond)(comm) }

226

www.manaraa.com

Classes and objects

� classes provide fields and methods. These are

accessed using the dot notation. However, there may

be private fields and methods that are inaccessible

outside the class.

Scala, being an object-oriented language, uses

dynamic dispatch for method invocation. Dynamic

method dispatch is analogous to higher-order function

calls. In both cases, the identity of the code to be

executed is known only at run-time. This similarity is

not superficial. Indeed, Scala represents every

function value as an object.

227

www.manaraa.com

� Every class in Scala has a superclass which it extends.

A class inherits all members from its superclass. It may

also override (i.e. redefine) some inherited members.

If class A extends class B, then objects of type A may be

used wherever objects of type B are expected. We say in

this case that type A conforms to type B.

� Scala maintains the invariant that interpreting a value of a

subclass as an instance of its superclass does not change

the representation of the value.

Amongst other things, it guarantees that for each pair of

types S <: T and each instance s of S the following

semantic equality holds:

s.asInstanceOf[T].asInstanceOf[S] = s

228

www.manaraa.com

� Methods in Scala do not necessarily take a parameter

list. These parameterless methods are accessed just

as value fields.

The uniform access of fields and parameterless

methods gives increased flexibility for the implementer

of a class. Often, a field in one version of a class

becomes a computed value in the next version.

Uniform access ensures that clients do not have to

be rewritten because of that change.

229

www.manaraa.com

� abstract classes may have deferred members which are

declared but which do not have an implementation.

Therefore, no objects of an abstract class may be created

using new.

abstract class IntSet {
def incl(x:Int): IntSet

def contains(x:Int): Boolean

}

Abstract classes may be used to provide interfaces.

230

www.manaraa.com

� Scala has object definitions. An object definition

defines a class with a single instance. It is not

possible to create other objects with the same

structure using new.

object EmptySet extends IntSet {
def incl(x: Int): IntSet

= new NonEmptySet(x,EmptySet,EmptySet)

def contains(x: Int): Boolean = false

}

An object is created the first time one of its members

is accessed. (This strategy is called lazy evaluation.)

231

www.manaraa.com

� A trait is a special form of an abstract class that does

not have any value (as opposed to type) parameters for its

constructor and is meant to be combined with other

classes.

trait IntSet {
def incl(x:Int): IntSet

def contains(x:Int): Boolean

}

Traits may be used to collect signatures of some

functionality provided by different classes.

232

www.manaraa.com

Case study (I)
abstract class Expr {

def isNumber: Boolean

def isSum: Boolean

def numValue: Int

def leftOp: Expr

def rightOp: Expr

}
class Number(n: Int) extends Expr {

def isNumber: Boolean = true

def isSum: Boolean = false

def numValue: Int = n

def leftOp: Expr = error("Number.leftOp")

def rightOp: Expr = error("Number.rightOp")

}

233

www.manaraa.com

class Sum(e1: Expr; e2: Expr) extends Expr {
def isNumber: Boolean = false

def isSum: Boolean = true

def numValue: Int = error("Sum.numValue")

def leftOp: Expr = e1

def rightOp: Expr = e2

}
def eval(e: Expr): Int = {

if (e.isNumber) e.NumValue

else if (e.isSum) eval(e.leftOp) + eval(e.rightOp)

else error("bad expression")

}

? What is good and what is bad about this implementation?

234

www.manaraa.com

Case study (II)

abstract class Expr {
def eval: Int

}
class Number(n: Int) extends Expr {

def eval: Int = n

}
class Sum(e1: Expr; e2: Expr) extends Expr {

def eval: Int = e1.eval + e2.eval

}

235

www.manaraa.com

This implementation is easily extensible with new types

of data:

class Prod(e1: Expr; e2: Expr) extends Expr {
def eval: Int = e1.eval * e2.eval

}

But, is this still the case for extensions involving new

operations on existing data?

The language-design problem of allowing a data-type

definition where one can add new cases to the datatype and

new functions over the datatype (without requiring ubiquitous

changes) is known as the ‘expression problem’:

http://en.wikipedia.org/wiki/Expression_problem

236

www.manaraa.com

Case study (III)
Case classes

abstract class Expr

case class Number(n: Int) extends Expr

case class Sum(e1: Expr; e2: Expr) extends Expr

case class Prod(e1: Expr; e2: Expr) extends Expr

� Case classes implicitly come with a constructor

function, with the same name as the class.

Hence one can construct expression trees as:

Sum(Sum(Number(1) , Number(2)) , Number(3))

237

www.manaraa.com

� Case classes and case objects implicitly come with

implementations of methods toString, equals, and

hashCode.

� Case classes implicitly come with nullary accessor

methods which retrieve the constructor arguments.

� Case classes allow the constructions of patterns which

refer to the case class constructor (see next slide).

(Case classes are essentially ML data types in an

object-oriented language.)

238

www.manaraa.com

Case study (III)
Pattern matching

The match method takes as argument a number of cases:

def eval(e: Expr): Int

= e match

{ case Number(x) => x

case Sum(l,r) => eval(l) + eval(r)

case Prod(l,r) => eval(l) * eval(r)

}

If none of the patterns matches, the pattern matching

expression is aborted with a MatchError exception.

239

www.manaraa.com

Generic types and methods

� Classes in Scala can have type parameters.

abstract class Set[A] {
def incl(x: A): Set[A]

def contains(x: A): Boolean

}

� Scala has a fairly powerful type inferencer which allows

one to omit type parameters to polymorphic functions

and constructors.

240

www.manaraa.com

Generic types
Variance annotations

The combination of type parameters and subtyping poses

some interesting questions.

? If T is a subtype of a type S, should Array[T] be a

subtype of the type Array[S]?

! No, if one wants to avoid run-time checks!

241

www.manaraa.com

Example:

� For ColPoint <: Point and a: Array[ColPoint],

(a.apply(0)).color: Col

type checks.

� Suppose that Array is covariant:

ColPoint <: Point =⇒ Array[ColPoint] <: Array[Point]

so that a: Array[Point].

� Then, for p: Point, we have that a.update(0,p) type

checks; and, as above, so does

(a.apply(0)).color: Col

But this is semantically equal to p.color; a run-time

error.

242

www.manaraa.com

In Scala, generic types like the following one:

class Array[A] {
def apply(index: Int): A

...

def update(index: Int, elem: A)

...

}

have by default non-variant subtyping.

However, one can enforce co-variant (or covariant) subtyping

by prefixing a formal type parameter with a +. There is also a

prefix - which indicates contra-variant subtyping.

243

www.manaraa.com

Scala uses a conservative approximation to verify

soundness of variance annotations: a covariant type

parameter of a class may only appear in covariant

position inside the class. Hence, the following class

definition is rejected:

class Array[+A] {
def apply(index: Int): A

...

def update(index:Int , elem: A)

...

}

244

www.manaraa.com

Functions are objects

Recall that Scala is an object-oriented language in that every

value is an object. It follows that functions are objects in Scala.

Indeed, the function type

(A1, ..., Ak) => B

is equivalent to the following parameterised class type:

abstract class Functionk[-A1,...,-Ak,+B]

{ def apply(x1:A1,...,xn:Ak): B }




Since function types are classes in Scala, they can be
further refined in subclasses. An example are arrays,
which are treated as special functions over the type of
integers.




245

www.manaraa.com

The function x => x+1 would be expanded to an instance

of Function1 as follows:

new Function1[Int,Int] {
def apply(x:Int): Int = x+1

}

Conversely, when a value of a function type is applied to

some arguments, the apply method of the type is implicitly

inserted; e.g. for f and object of type Function1[A,B],

the application f(x) is expanded to f.apply(x).

NB: Function subtyping is contravariant in its arguments

whereas it is covariant in its result. ? Why?

246

www.manaraa.com

Generic types
Type parameter bounds

trait Ord[A] {
def lt(that: A): Boolean

}
case class Num(value: Int) extends Ord[Num] {

def lt(that: Num) = this.value < that.value

}
trait Heap[A <: Ord[A]] {

def insert(x: A): Heap[A]

def min: A

def remove: Heap[A]

}

247

www.manaraa.com

Generic types
Lower bounds

� A non-example:

abstract class Stack[+A] // covariant declaration

{ def push(x: A) // A in contravariant position

// hence rejected

: Stack[A]

= new NonEmptyStack(x,this)

def top: A

def pop: Stack[A] }

248

www.manaraa.com

that makes sense:

ColPoint <: Point

s : Stack[ColPoint] <: Stack[Point]

p : Point

s.push(p) : Stack[Point] // OK

(s.push(p)).top : Point // OK

249

www.manaraa.com

� Covariant generic functional stacks.

The solution:
abstract class Stack[+A] {
def push[B >: A](x: B): Stack[B]

= new NonEmptyStack(x,this)

def top: A

def pop: Stack[A]

}
class NonEmptyStack[+A](elem: A, rest: Stack[A])

extends Stack[A] {
def top = elem

def pop = rest

}

250

www.manaraa.com

Implicit parameters and conversions

� Implicit parameters

In Scala, there is an implicit keyword that can be used

at the beginning of a parameter list.

def qsort[T](xs: Array[T])(implicit o: Ord[T]): Array[T]

= if (xs.length <= 1) xs

else {
val pivot = xs(xs.length/2)

Array.concat(qsort(xs filter (x => o.lt(x,pivot))) ,

xs filter (x => x == pivot) ,

qsort(xs filter (x => o.lt(pivot,x))))

}

251

www.manaraa.com

The principal idea behind implicit parameters is that

arguments for them can be left out from a method call.

If the arguments corresponding to implicit parameters

are missing, they are inferred by the Scala compiler.

� Implicit conversions

As last resort in case of type mismatch the Scala

compiler will try to apply an implicit conversion.

implicit def int2ord(x: Int): Ord[Int]

= new Ord[Int] { def lt(y: Int) = x < y }
Implicit conversions can also be applied in member

selections.

252

www.manaraa.com

Mixin-class composition

Every class or object in Scala can inherit from several traits

in addition to a normal class.

trait AbsIterator[T] {
def hasNext: Boolean

def next: T

}
trait RichIterator[T] extends AbsIterator[T] {

def foreach(f: T => Unit): Unit =

while (hasNext) f(next)

}

253

www.manaraa.com

class StringIterator(s: String)

extends AbsIterator[Char] {
private var i = 0

def hasNext = i < s.length

def next = { val x = s charAt i; i = i+1; x }
}

Traits can be used in all contexts where other abstract classes

appear; however only traits can be used as mixins.

254

www.manaraa.com

object Test {
def main(args: Array[String]): Unit = {
class Iter extends StringIterator(args(0))

with RichIterator[Char]

val iter = new Iter

iter.foreach(System.out.println)

}
}

The class Iter is constructed from a mixin composition

of the parents StringIterator (called the superclass)

and RichIterator (called a mixin) so as to combine their

functionality.

255

www.manaraa.com

The class Iter inherits members from both StringIterator

and RichIterator.

NB: Mixin-class composition is a form of multiple inheritance,

but avoids the ‘diamond’ problem of C++ and similar

languages (where a class containing a field appears at

multiple places in the inheritance hierarchy).

class A { public: int f;}

class B: public A { ... }

class C: public A { ... }

class D: public B,C { ... f ... }

// is this B::f or C::f?

// do B and C both have an A, or share a single one?

256

www.manaraa.com

Scala language innovations

� Flexible syntax and type system.

� Pattern matching over class hierarchies unifies

functional and object-oriented data access.

� Abstract types and mixin composition unify

concepts from object and module systems.

257

www.manaraa.com

˜ Topic X ˜
Miscellaneous (entertaining) concepts

Additional notes for lecture 8

258

www.manaraa.com

Aspirational Overview

� Value types

� Generalised Algebraic Data Types (GADTs)

� Haskell classes

� Monadic IO

� Continuation-passing style (CPS) and call/cc

Wikipedia:Call-with-current-continuation

� Access qualifiers vs. encapsulation.

� Futures

� Coq and Agda

259

www.manaraa.com

Reified continuations

Make calling continuation appear to be a value in the

language.

Reminder on continuation-passing style (CPS), perhaps

mentioned in Compiler Construction. Can see a function of

type t1 → t2 as a function of type

(t2 → unit) → (t1 → unit)

Or uncurrying

(t2 → unit)× t1 → unit

(One parameter of type t1 and the other saying what to do with

the result t2 – like argument and return address!)

260

www.manaraa.com

Instead of

fun f(x) = ... return e ...

print f(42)

we write

fun f’(k, x) = ... return k e’ ...

f(print, 42)

In CPS all functions return unit and all calls are now tail-calls

(so the above isn’t just a matter of adjusting a return

statement).

Sussman and Steele papers from the 1970’s (“Lambda the

ultimate XXX”).

261

www.manaraa.com

Reified continuations (2)

A function with two continuation parameters rather than one

can act as normal return vs. exception return. (Or Prolog

success return vs failure return.)

But we don’t want to write all our code in CPS style. So:

call/cc “call with current continuation”. Lots of neat

programming tricks in a near-functional language.

Reified? The continuation used at the meta-level (semantics)

to explain how a language operates is exposed as an

object-level (run-time value).

262

www.manaraa.com

Reified continuations (3)

Core idea (originally in Scheme, a form of Lisp):

fun f(k) = let x = k(2) in 3;

In ML this function ‘always returns 3’. E.g.

> f(fn x=>x);

But callcc(f) returns 2!

The return address/continuation used in the call to f is reified

into a side-effecting function value k which represents the “rest

of the computation after the call to f”.

Some similarity with f(fn x => raise Foo);

263

www.manaraa.com

GADTs

OCaml data type (just like datatype in ML):

type ’a mylist = MyNil | MyCons of ’a * ’a mylist;;

Can also be written

type ’a mylist = MyNil : ’a mylist

| MyCons : ’a * ’a mylist -> ’a mylist;;

Why bother (it’s longer and duplicates info)?

264

www.manaraa.com

How about this (OCaml GADT):

type _ exp = Val : ’a -> ’a exp

| Eq : ’a exp * ’a exp -> bool exp

| Add : int exp * int exp -> int exp

Allows bool exp values to be checked that Add, Eq etc. are

used appropriately. E.g.

Val 3: int exp
√

Val true: bool exp
√

Add(Val 3, Val 4): int exp
√

Add(Val 3, Val true) ×

Eq(Val true, Val false): bool exp
√

Eq(Val 3, Val 4): bool exp
√

Eq(Val 3, Val true) ×

Can’t do this in SML.

265

www.manaraa.com

Can even write eval where the type of the result depends on

the value of its type:

fun eval(Val(x)) = x

| eval(Eq(x,y)) = eval(x) = eval(y)

| eval(Add(x,y)) = eval(x) + eval(y);

eval: ’a exp -> ’a

(Some type-checking dust being swept under the carpet here.)

266

